-
Anatomy, life-history and phylogeny of an exceptionally preserved hadrosaur from the Judith River Formation of Montana (USA)
-
Located in
Library
/
RBINS Staff Publications 2017
-
Remains of Atsinganosaurus from the Late Cretaceous Site of Velaux-La Bastide Neuve (Southern France)
-
Located in
Library
/
RBINS Staff Publications 2017
-
Spatial and seasonal variation of biomineral suspended particulate matter properties in high-turbid nearshore and low-turbid offshore zones
-
Suspended particulate matter (SPM) is abundant and essential in marine and coastal waters, and comprises a wide variety of biomineral particles, which are practically grouped into organic biomass and inorganic sediments. Such biomass and sediments interact with each other and build large biomineral aggregates via flocculation, therefore controlling the fate and transport of SPM in marine and coastal waters. Despite its importance, flocculation mediated by biomass-sediment interactions is not fully understood. Thus, the aim of this research was to explain biologically mediated flocculation and SPM dynamics in different locations and seasons in marine and coastal waters. Field measurement campaigns followed by physical and biochemical analyses had been carried out from 2004 to 2011 in the Belgian coastal area to investigate bio-mediated flocculation and SPM dynamics. Although SPM had the same mineralogical composition, it encountered different fates in the turbidity maximum zone (TMZ) and in the offshore zone (OSZ), regarding bio-mediated flocculation. SPM in the TMZ built sediment-enriched, dense, and settleable biomineral aggregates, whereas SPM in the OSZ composed biomass-enriched, less dense, and less settleable marine snow. Biological proliferation, such as an algal bloom, was also found to facilitate SPM in building biomass-enriched marine snow, even in the TMZ. In short, bio-mediated flocculation and SPM dynamics varied spatially and seasonally, owing to biomass-sediment interactions and bio-mediated flocculation.
Located in
Library
/
RBINS Staff Publications 2017
-
Evaluation of the migration of 15 photo-initiators from cardboard packaging into Tenax® using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)
-
Photo-initiators are widely used to cure ink on packaging materials used in food applications such as plastic films or cartonboards. In migration studies, food simulants are very often used to simulate food, like Tenax®, which is the simulant for dry foodstuffs. In this paper a fast and reliable confirmation method for the determination of the following photoinitiators in Tenax® is described: benzophenone (BP), 4,4´-bis(diethylamino)benzophenone (DEAB), 2-chloro-9H-thioxanthen-9-one (CTX), 1-chloro-4-propoxy-9H-thioxanthen-9-one (CPTX), 2,4-diethyl-9H-thioxanthen-9-one(DETX), 2,2-dimethoxy-2-phenyl acetophenone (DMPA), 4-(dimethylamino)benzophenone (DMBP), 2-ethylanthraquinone(EA), ethyl-4-dimethylaminobenzoate (EDMAB), 1-hydroxylcyclohexyl phenyl ketone (HCPK), 2-hydroxy-4´- (2-hydroxyethoxy)-2-methylpropiophenone (HMMP), 2-isopropyl-9H-thioxanthen-9-one (ITX), 4-methylbenzophenone(MBP), Michler’s ketone (MK), and 4-phenylbenzophenone (PBZ). After the migration study was completed, the simulant Tenax® was extracted using acetonitrile, followed by analysis on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Quantification was carried out using benzophenone-d10 (BP-d10) as internal standard. The presented method is validated in terms of matrix effect, specificity, linearity, recovery, precision and sensitivity, showing the method can detect all photo-initiators at very low concentrations (LOD < 0.125 μg g–1 for all substances). Finally, the procedure was applied to real samples, proving the capabilities of the presented method.
Located in
Library
/
No RBINS Staff publications
-
The impact of electrogenic sulfur oxidation on the biogeochemistry of coastal sediments: A field study
-
Electro-active sediments distinguish themselves from other sedimentary environments by the presence of microbially induced electrical currents in the surface layer of the sediment. The electron transport is generated by metabolic activity of long filamentous cable bacteria, in a process referred to as electrogenic sulfur oxidation (e-SOx). Laboratory experiments have shown that e-SOx exerts a large impact on the sediment geochemistry, but its influence on the in situ geochemistry of marine sediments has not been previously investigated. Here, we document the biogeochemical cycling associated with e-SOx in a cohesive coastal sediment in the North Sea (Station 130, Belgian Coastal Zone) during three campaigns (January, March and May 2014). Fluorescence in situ hybridization showed that cable bacteria were present in high densities throughout the sampling period, and that filaments penetrated up to 7 cm deep in the sediment, which is substantially deeper than previously recorded. High resolution microsensor profiling (pH, H2S and O2) revealed the typical geochemical fingerprint of e-SOx, with a wide separation (up to 4.8 cm) between the depth of oxygen penetration and the depth of sulfide appearance. The metabolic activity of cable bacteria induced a current density of 25–32 mA m-2 and created an electrical field of 12–17 mV m-1 in the upper centimeters of the sediment. This electrical field created an ionic drift, which strongly affected the depth profiles and fluxes of major cations (Ca2+, Fe2+) and anions (SO42-) in the pore water. The strong acidification of the pore water at depth resulted in the dissolution of calcium carbonates and iron sulfides, thus leading to a strong accumulation of iron, calcium and manganese in the pore water. While sulfate accumulated in the upper centimeters, no significant effect of e-SOx was found on ammonium, phosphate and silicate depth profiles. Overall, our results demonstrate that cable bacteria can strongly modulate the sedimentary biogeochemical cycling under in situ conditions
Located in
Library
/
No RBINS Staff publications
-
The Influence of Bioturbation on Iron and Sulphur Cycling in Marine Sediments: A Model Analysis
-
The geochemical cycles of iron and sulphur in marine sediments are strongly intertwined and give rise to a complex network of redox and precipitation reactions. Bioturbation refers to all modes of transport of particles and solutes induced by larger organisms, and in the present-day seafloor, bioturbation is one of the most important factors controlling the biogeochemical cycling of iron and sulphur. To better understand how bioturbation controls Fe and S cycling, we developed reactive transport model of a coastal sediment impacted by faunal activity. Subsequently, we performed a model sensitivity analysis, separately investigating the two different transport modes of bioturbation, i.e. bio-mixing (solid particle transport) and bio-irrigation (enhanced solute transport). This analysis reveals that bio-mixing and bio-irrigation have distinct—and largely opposing effects on both the iron and sulphur cycles. Bio-mixing enhances transport between the oxic and suboxic zones, thus promoting the reduction of oxidised species (e.g. iron oxyhydroxides) and the oxidation of reduced species (e.g. iron sulphides). Through the reoxidation of iron sulphides, bio-mixing strongly enhances the recycling of Fe and S between their reduced and oxidised states. Bio-irrigation on the other hand removes reduced solutes, i.e. ferrous iron and free sulphide, from the sediment pore water. These reduced species are then reoxidised in the overlying water and not recycled within the sediment column, which leads to a decrease in Fe and S recycling. Overall, our results demonstrate that the ecology of the macrofauna (inducing bio-mixing or bio-irrigation, or both) matters when assessing their impact on sediment geochemistry. This finding seems particularly relevant for sedimentary cycling across Cambrian transition, when benthic fauna started colonizing and reworking the seafloor.
Located in
Library
/
No RBINS Staff publications
-
Influence of Natural Oxygenation of Baltic Proper Deep Water on Benthic Recycling and Removal of Phosphorus, Nitrogen, Silicon and Carbon
-
At the end of 2014, a Major Baltic Inflow (MBI) brought oxygenated, salty water into the Baltic proper and reached the long-term anoxic Eastern Gotland Basin (EGB) by March 2015. In July 2015, we measured benthic fluxes of phosphorus (P), nitrogen (N) and silicon (Si) nutrients and dissolved inorganic carbon (DIC) in situ using an autonomous benthic lander at deep sites (170–210 m) in the EGB, where the bottom water oxygen concentration was 30–45 μM. The same in situ methodology was used to measure benthic fluxes at the same sites in 2008–2010, but then under anoxic conditions. The high efflux of phosphate under anoxic conditions became lower upon oxygenation, and turned into an influx in about 50% of the flux measurements. The C:P and N:P ratios of the benthic solute flux changed from clearly below the Redfield ratio (on average about 70 and 3–4, respectively) under anoxia to approaching or being well above the Redfield ratio upon oxygenation. These observations demonstrate retention of P in newly oxygenated sediments. We found no significant effect of oxygenation on the benthic ammonium, silicate and DIC flux. We also measured benthic denitrification, anammox, and dissimilatory nitrate reduction to ammonium (DNRA) rates at the same sites using isotope-pairing techniques. The bottom water of the long-term anoxic EGB contained less than 0.5 μM nitrate in 2008–2010, but the oxygenation event created bottom water nitrate concentrations of about 10 μM in July 2015 and the benthic flux of nitrate was consistently directed into the sediment. Nitrate reduction to both dinitrogen gas (denitrification) and ammonium (DNRA) was initiated in the newly oxygenated sediments, while anammox activity was negligible. We estimated the influence of this oxygenation event on the magnitudes of the integrated benthic P flux (the internal P load) and the fixed N removal through benthic and pelagic denitrification by comparing with a hypothetical scenario without the MBI. Our calculations suggest that the oxygenation triggered by the MBI in July 2015, extrapolated to the basin-wide scale of the Baltic proper, decreased the internal P load by 23% and increased the total (benthic plus pelagic) denitrification by 18%.
Located in
Library
/
No RBINS Staff publications
-
Comparison of Chelex based resins in diffusive gradients in thin-film for high resolution assessment of metals
-
The passive sampling technique of diffusive gradients in thin-film (DGT) is widely used to determine 1D profiles (using Chelex-100 resin) and 2D images (using suspended particulate reagent-iminodiacetate resin, abbreviated as SPR-IDA resin) of metals in sediment pore waters and in oxic/anoxic soils. However, when deployed in anoxic sediments with high metal concentrations, Fe and Mn concentrations determined with the Chelex-100 resin gel were ~ 5 times higher than concentrations measured with the SPR-IDA resin gel. This discrepancy suggests that the SPR-IDA resin gel is saturated faster than the Chelex-100 resin gel. Here, we tested the adsorption capacity of the SPR-IDA resin gel and compared it to the Chelex-100 resin gel. Fe and Mn binding capacities on a SPR-IDA gel disc are less than 0.1 μmoles, which means that they are far below those on a Chelex-100 gel disc (around 3.2 μmoles), while competition with stronger binding metals such as Cu and Cd further lowers Fe and Mn capacities. This restricts the SPR-IDA resin gel to be used in contaminated marine sediments. We propose the use of a ground Chelex-100 resin, which is prepared by grinding Chelex-100 resin in a ball-mill prior to gel preparation. The capacities of Fe and Mn on a ground Chelex-100 resin gel disc are around 1.6 μmoles, more than 16 times higher than the capacity on SPR-IDA gel disc. In addition, the bead size of the ground Chelex-100 resin is small enough (~ 10 μm) to allow high resolution LA-ICP-MS imaging of Fe, Mn and trace metals in sediment pore waters as well as soils.
Located in
Library
/
No RBINS Staff publications
-
Transient bottom water oxygenation creates a niche for cable bacteria in long-term anoxic sediments of the Eastern Gotland Basin
-
Cable bacteria have been reported in sediments from marine and freshwater locations, but the environmental factors that regulate their growth in natural settings are not well understood. Most prominently, the physiological limit of cable bacteria in terms of oxygen availability remains poorly constrained. In this study, we investigated the presence, activity and diversity of cable bacteria in relation to a natural gradient in bottom water oxygenation in a depth transect of the Eastern Gotland Basin (Baltic Sea). Cable bacteria were identified by FISH at the oxic and transiently oxic sites, but not at the permanently anoxic site. Three species of the candidate genus Electrothrix, i.e. marina, aarhusiensis and communis were found coexisting within one site. The highest filament density (33 m cm−2) was associated with a 6.3 mm wide zone depleted in both oxygen and free sulphide, and the presence of an electric field resulting from the electrogenic sulphur oxidizing metabolism of cable bacteria. However, the measured filament densities and metabolic activities remained low overall, suggesting a limited impact of cable bacteria at the basin level. The observed bottom water oxygen levels (< 5 μM) are the lowest so far reported for cable bacteria, thus expanding their known environmental distribution.
Located in
Library
/
No RBINS Staff publications
-
Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing
-
The evolution of burrowing animals forms a defining event in the history of the Earth. It has been hypothesised that the expansion of seafloor burrowing during the Palaeozoic altered the biogeochemistry of the oceans and atmosphere. However, whilst potential impacts of bioturbation on the individual phosphorus, oxygen and sulphur cycles have been considered, combined effects have not been investigated, leading to major uncertainty over the timing and magnitude of the Earth system response to the evolution of bioturbation. Here we integrate the evolution of bioturbation into the COPSE model of global biogeochemical cycling, and compare quantitative model predictions to multiple geochemical proxies. Our results suggest that the advent of shallow burrowing in the early Cambrian contributed to a global low-oxygen state, which prevailed for ~100 million years. This impact of bioturbation on global biogeochemistry likely affected animal evolution through expanded ocean anoxia, high atmospheric CO2 levels and global warming.
Located in
Library
/
No RBINS Staff publications