Offshore wind farms (OWFs) and their associated cables, foundations and scour protection are often constructed in soft- sediment environments. This introduction of hard substrate has been shown to have similar effects as artificial reefs by providing food resources and offering increased habitat complexity, thereby aggregating fish around the turbines and foundations. However, as most studies have focused their efforts on fish species that are typically associated with reef structures, knowledge on how soft sediment species are affected by OWFs is still largely lacking. In this study, we analysed the trophic ecology and condition of plaice, a flatfish species of commercial interest, in relation to a Belgian OWF. The combination of a stomach and intestine content analysis with the use of biomarkers (i.e. fatty acids and stable isotopes) identified a clear shift in diet with increased occurrences of typical hard-substrate prey species for fish in the vicinity of the foundations and this both on the short and the long term. Despite some condition indices suggesting that the hard substrate provides increased food availability, no clear increases of overall plaice condition or fecundity were found. Samples from within the wind farm, however, contained larger fish and had a higher abundance of females compared to control areas, potentially indicating a refuge effect caused by the cessation of fisheries activities within the OWF. These results suggest that soft-sediment species can potentially benefit from the presence of an OWF, which could lead to fish production. However, more research is still needed to further elucidate the behavioral ecology of plaice within OWFs to make inferences on how they can impact fish populations on a larger spatial scale.
Located in
Library
/
RBINS Staff Publications 2023
Thousands of artificial (‘human-made ’ ) structures are present in the marine environment, many at or approaching end-of-life and requiring urgent decisions regarding their decommissioning. No consensus has been reached on which decommissioning option(s) result in optimal environmental and societal outcomes, in part, owing to a paucity of evidence from real-world decommissioning case studies. To address this significant chal- lenge, we asked a worldwide panel of scientists to provide their expert opinion. They were asked to identify and characterise the ecosystem effects of artificial structures in the sea, their causes and consequences, and to identify which, if any, should be retained following decommissioning. Experts considered that most of the pressures driving ecological and societal effects from marine artificial structures (MAS) were of medium severity, occur frequently, and are dependent on spatial scale with local-scale effects of greater magnitude than regional effects. The duration of many effects following decommissioning were considered to be relatively short, in the order of days. Overall, environmental effects of structures were considered marginally undesirable, while societal effects marginally desirable. Experts therefore indicated that any decision to leave MAS in place at end-of-life to be more beneficial to society than the natural environment. However, some individual environmental effects were considered desirable and worthy of retention, especially in certain geographic locations, where structures can support improved trophic linkages, increases in tourism, habitat provision, and population size, and provide stability in population dynamics. The expert analysis consensus that the effects of MAS are both negative and positive for the environment and society, gives no strong support for policy change whether removal or retention is favoured until further empirical evidence is available to justify change to the status quo. The combination of desirable and undesirable effects associated with MAS present a significant challenge for policy- and decision- makers in their justification to implement decommissioning options. Decisions may need to be decided on a case-by-case basis accounting for the trade-off in costs and benefits at a local level.
Located in
Library
/
RBINS Staff Publications 2023