Skip to content. | Skip to navigation

Personal tools

You are here: Home
1516 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference EKLIPSE: engaging knowledge holders and networks for evidence-informed European policy on biodiversity and ecosystem services
The aim of EKLIPSE is to develop a mechanism to inform European-scale policy on biodiversity and related environmental challenges. This paper considers two fundamental aspects of the decision-support mechanism being developed by EKLIPSE: 1) the engagement of relevant actors from science, policy and society to jointly identify evidence for decision making; and 2) the networking of scientists and other holders of knowledge on biodiversity and other relevant evidence. The mechanism being developed has the potential not only to build communities of knowledge holders but to build informal networks among those with similar interests in evidence, be they those that seek to use evidence or those who are building evidence, or both. EKLIPSE has been successful in linking these people and in contributing to building informal networks of requesters of evidence, and experts of evidence and its synthesis. We have yet to see, however, significant engagement of formal networks of knowledge holders. Future success, however, relies on the continued involvement with and engagement of networks, a high degree of transparency within the processes and a high flexibility of structures to adapt to different requirements that arise with the broad range of requests to and activities of EKLIPSE. key messages EKLIPSE develops a mechanism to inform policy on biodiversity and related environmental challenges. EKLIPSE operates at a European scale, bringing together policy-makers and knowledge holders from both science and society. EKLIPSE promotes the networking of scientists and other holders of knowledge on biodiversity and other relevant evidence.
Located in Library / RBINS Staff Publications 2018
Article Reference In situ incubations with the Gothenburg benthic chamber landers: Applications and quality control
In situ incubations of sediment with overlying water provide valuable and consistent information about benthic fluxes and processes at the sediment-water interface. In this paper, we describe our experiences and a variety of applications from the last 14 years and 308 deployments with the Gothenburg benthic chamber lander systems. We give examples of how we use sensor measurements for chamber leakage control, in situ chamber volume determination, control of syringe sampling times, sediment resuspension and stirring quality. We present examples of incubation data for in situ measurements of benthic fluxes of oxygen, dissolved inorganic carbon, nutrients, metals and gases made with our chamber landers, as well as manipulative injection experiments to study nitrogen cycling (injections of 15N nitrate), phosphate retention (injections of marl suspension) and targeted sediment resuspension. Our main goal is to demonstrate the possibilities that benthic chamber lander systems offer to measure solute fluxes and study processes at the sediment-water interface. Based on our experience, we recommend procedures to be used in order to obtain high quality data with benthic chamber landers.
Located in Library / RBINS Staff Publications 2021
Article Reference ECMAScript program Bioturbation has a limited effect on phosphorus burial in salt marsh sediments
It has been hypothesized that the evolution of animals during the Ediacaran–Cambrian transition stimulated the burial of phosphorus in marine sediments. This assumption is centrally based on data compilations from marine sediments deposited under oxic and anoxic bottom waters. Since anoxia excludes the presence of infauna and sediment reworking, the observed differences in P burial are assumed to be driven by the presence of bioturbators. This reasoning however ignores the potentially confounding impact of bottom-water oxygenation on phosphorus burial. Here, our goal is to test the idea that bioturbation increases the burial of organic and inorganic phosphorus (Porg and Pinorg, respectively) while accounting for bottom-water oxygenation. We present solid-phase phosphorus speciation data from salt marsh ponds with and without bioturbation (Blakeney salt marsh, Norfolk, UK). In both cases, the pond sediments are exposed to oxygenated bottom waters, and so the only difference is the presence or absence of bioturbating macrofauna. Our data reveal that the rate of Porg and Pinorg burial are indistinguishable between bioturbated and non-bioturbated sediments. A large terrestrial fraction of organic matter and higher sedimentation velocity than generally found in marine sediments (0.3 +/- 0.1 cm yr-1) may partially impact these results. However, the absence of a clear effect of bioturbation on total P burial puts into question the presumed importance of bioturbation for phosphorus burial.
Located in Library / RBINS Staff Publications 2021
Article Reference ECMAScript program Deep-water inflow event increases sedimentary phosphorus release on a multi-year scale
Phosphorus fertilisation (eutrophication) is expanding oxygen depletion in coastal systems worldwide. Under low-oxygen bottom water conditions, phosphorus release from the sediment is elevated, which further stimulates primary production. It is commonly assumed that reoxygenation could break this “vicious cycle” by increasing the sedimentary phosphorus retention. Recently, a deepwater inflow into the Baltic Sea created a natural in situ experiment that allowed us to investigate if temporary reoxygenation stimulates sedimentary retention of dissolved inorganic phosphorus (DIP). Surprisingly, during this 3-year study, we observed a transient but considerable increase, rather than a decrease, in the sediment efflux of DIP and other dissolved biogenic compounds. This suggested that the oxygenated inflow elevated the organic matter degradation in the sediment, likely due to an increase in organic matter supply to the deeper basins, potentially combined with a transient stimulation of the mineralisation efficiency. As a result, the net sedimentary DIP release per m2 was 56 %–112% higher over the years following the re-oxygenation than before. In contrast to previous assumptions, our results show that inflows of oxygenated water to anoxic bottom waters can increase the sedimentary phosphorus release.
Located in Library / RBINS Staff Publications 2021
Article Reference Iron and sulfur cycling in the cGENIE.muffin Earth system model (v0.9.21)
The coupled biogeochemical cycles of iron and sulfur are central to the long-term biogeochemical evolution of Earth’s oceans. For instance, before the development of a persistently oxygenated deep ocean, the ocean interior likely alternated between states buffered by reduced sulfur (“euxinic”) and buffered by reduced iron (“ferruginous”), with important implications for the cycles and hence bioavailability of dissolved iron (and phosphate). Even after atmospheric oxygen concentrations rose to modern-like values, the ocean episodically continued to develop regions of euxinic or ferruginous conditions, such as those associated with past key intervals of organic carbon deposition (e.g. during the Cretaceous)and extinction events (e.g. at the Permian–Triassic boundary). A better understanding of the cycling of iron and sulfur in an anoxic ocean, how geochemical patterns in the ocean relate to the available spatially heterogeneous geological observations, and quantification of the feedback strengths between nutrient cycling, biological productivity, and ocean redox requires a spatially resolved representation of ocean circulation together with an extended set of (bio)geochemical reactions. Here, we extend the “muffin” release of the intermediate complexity Earth system model cGENIE to now include an anoxic iron and sulfur cycle (expanding the existing oxic iron and sulfur cycles), enabling the model to simulate ferruginous and euxinic redox states as well as the precipitation of reduced iron and sulfur minerals (pyrite, siderite, greenalite) and attendant iron and sulfur isotope signatures, which we describe in full. Because tests against present-day (oxic) ocean iron cycling exercises only a small part of the new code, we use an idealized ocean configuration to explore model sensitivity across a selection of key parameters. We also present the spatial patterns of concentrations and d56Fe and d34S isotope signatures of both dissolved and solid-phase Fe and S species in an anoxic ocean as an example application. Our sensitivity analyses show that the first-order results of the model are relatively robust against the choice of kinetic parameter values within the Fe–S system and that simulated concentrations and reaction rates are comparable to those observed in process analogues for ancient oceans (i.e. anoxic lakes). Future model developments will address sedimentary recycling and benthic iron fluxes back to the water column, together with the coupling of nutrient (in particular phosphate) cycling to the iron cycle.
Located in Library / RBINS Staff Publications 2021
Techreport Reference A series of two Workshops to develop a suite of management options to reduce the impacts of bottom fishing on seabed habitats and undertake analysis of the trade-offs between overall benefit to seabed habitats and loss of fisheries revenue (WKTRADE3)
WKTRADE3 developed methods and data flows that allow the assessment of seabed abrasion, economic value, weight of landings and impact on the seabed of mobile bottom-contacting gears in European waters by MSFD broad habitat type and métier. This report provides regional-specific assessments of pressure and impact of bottom-contacting fishing gears on the seabed and of trade-offs between fisheries and seafloor habitat protection. We also present an analysis of spatial and temporal variation in core fishing grounds, and review and evaluate any potential consequences to the ecosystem that could arise, if greater areas of seabed are left undisturbed by bottom fishing. An attempt was made to disaggregate variable costs from the STECF Annual Economic Report out on VMS data. The assessment covers four MSFD (sub)regions, 22 sub-divisions and four countries from Mediterranean and Black Sea. It is spanning from Norway and Finland in the North to Bulgaria in the south. For all areas, the surface abrasion data were avail-able for at least one year. For the Greater North Sea and Baltic Sea, it was possible to perform a complete analysis, while in the other regions data availability was more limited and it was not possible to assess the seabed impact. The impact of mobile bottom-contacting gears (MBCG) on seabed biota was assessed using two different methods and the percentage unfished c-squares was used as an indicator of fishing pressure. The average fishing intensity varies widely between habitat types and regions. Landings per swept area, and landings per unit impact also vary be-tween métiers by an order of magnitude. Effort reductions resulted in different responses between the two impact indicators and the fishing pressure indicator. For PD, the reduction of effort resulted in proportional reductions between benthic impact and fisheries value. For the two other indicators, L1 and percentage area unfished, the relationship between the weight/value and the indicators was not linear, meaning that larger improvements in the indicators could be obtained at small decreases in fisheries landings. There are many other direct and indirect benefits to eco-system and ecosystem services that could result from a reduction in MBCG, but currently the methods and data are not available to quantify these at the required spatial scale. Collectively, ICES expert groups produce many valuable reports each year. Some of these are very long (up to 1000 pp.). As much of the target audience will not have time to read the whole of each document, it is imperative that reports start with a clear, succinct, and factual executive summary that presents the key issues addressed in the main report.
Located in Library / RBINS Staff Publications 2021
Article Reference Subtidal Natural Hard Substrate Quantitative Habitat Mapping: Interlinking Underwater Acoustics and Optical Imagery with Machine Learning
Subtidal natural hard substrates (SNHS) promote occupancy by rich benthic communities that provide irreplaceable and fundamental ecosystem functions, representing a global priority target for nature conservation and recognised in most European environmental legislation. However, scientifically validated methodologies for their quantitative spatial demarcation, including information on species occupancy and fine-scale environmental drivers (e.g., the effect of stone size on colonisation) are rare. This is, however, crucial information for sound ecological management. In this investigation, high-resolution (1 m) multibeam echosounder (MBES) depth and backscatter data and derivates, underwater imagery (UI) by video drop-frame, and grab sediment samples, all acquired within 32 km2 of seafloor in offshore Belgian waters, were integrated to produce a random forest (RF) spatial model, predicting the continuous distribution of the seafloor areal cover/m2 of the stones’ grain sizes promoting colonisation by sessile epilithic organisms. A semi-automated UI acquisition, processing, and analytical workflow was set up to quantitatively study the colonisation proportion of different grain sizes, identifying the colonisation potential to begin at stones with grain sizes Ø ≥ 2 cm. This parameter (i.e., % areal cover of stones Ø ≥ 2 cm/m2) was selected as the response variable for spatial predictive modelling. The model output is presented along with a protocol of error and uncertainty estimation. RF is confirmed as an accurate, versatile, and transferable mapping methodology, applicable to area-wide mapping of SNHS. UI is confirmed as an essential aid to acoustic seafloor classification, providing spatially representative numerical observations needed to carry out quantitative seafloor modelling of ecologically relevant parameters. This contribution sheds innovative insights into the ecologically relevant delineation of subtidal natural reef habitat, exploiting state-of-the-art underwater remote sensing and acoustic seafloor classification approaches.
Located in Library / RBINS Staff Publications 2021
Article Reference First Detections of Culiseta longiareolata (Diptera: Culicidae) in Belgium and the Netherlands
Located in Library / RBINS Staff Publications 2021
Article Reference Effects of elevational range shift on the morphology and physiology of a carabid beetle invading the sub-Antarctic Kerguelen Islands
Located in Library / RBINS Staff Publications 2020
Article Reference The new stick insect genus Medauromorpha gen. nov. with one new species from Vietnam and notes on Medauroidea Zompro, 2000 (Phasmida: Phasmatidae: Clitumninae)
Located in Library / RBINS Staff Publications 2017