Skip to content. | Skip to navigation

Personal tools

You are here: Home
48 items matching your search terms.
Filter the results.
Item type


































New items since



Sort by relevance · date (newest first) · alphabetically
Inbook Reference Blue mussel Mytilus edulis as habitat provider on offshore wind turbine foundations
We compare the species composition of the early (mussels not prevalent) and mature (mussels prevalent) subtidal colonizing communities at offshore windturbine foundations with special attention to the mobility and habitat preferences of the colonizing species. We identified 47 species belonging to nine different phyla from the samples of the mature community, including 21 species unique to the secondary substratum provided by the mussel shell, all of them are sessile species. Only 17 of the 37 species identified from the early subtidal colonizing community were present in the mature community. The main phyla present in both the early and mature samples were Mollusca, Arthropoda, and Annelida. Our findings confirm the hypothesis that mussels counteract the impoverishment of total species richness on wind turbines, caused by the abundant presence of Metridium senile in mature artificial hard substratum communities by providing secondary substratum for colonization by. sessile and hemi-sessile epifauna. The species assemblage found on these mussels is different from the one previously found on the piles, and only seventeen species (~36%) present in the mature community were already present in the first year after installation. In 2020, all bryozoan species (7) were exclusively observed on the secondary substratum provided by the shells of the mussels. However, these species were previously encountered on the scour protection or on the shells of other bivalves. This may be due to the fact that the secondary substratum provided by the mussels differs in physical properties (e.g., microhabitat complexity) from the primary (vertical) substratum of the pile.
Located in Library / RBINS Staff Publications 2021
Inbook Reference Offshore renewable energy development in the Belgian part of the North Sea – 2021
Located in Library / RBINS Staff Publications 2021
Article Reference The EU Biodiversity Strategy for 2030: Opportunities and challenges on the path towards biodiversity recovery
The European Union (EU) has committed to an ambitious biodiversity recovery plan in its Biodiversity Strategy for 2030 and the Green Deal. These policies aim to halt biodiversity loss and move towards sustainable development, focusing on restoring degraded habitats, extending the network of protected areas (PAs), and improving the effectiveness of management, governance, and funding. The achievement of conservation goals must be founded on understanding past successes and failures. Here, we summarise the strengths and weaknesses of past EU biodiversity conservation policies and practices and explore future opportunities and challenges. We focus on four main aspects: i) coordination among and within the EU Member States, ii) integration of biodiversity conservation into socio-economic sectors, iii) adequacy and sufficiency of funds, and iv) governance and stakeholder participation.Whilst past conservation efforts have benefitted from common rules across the EU and funding mechanisms, they have failed at operationalizing coordination within and across the Member States, integrating biodiversity conservation into other sectoral policies, adequately funding and effectively enforcing management, and facilitating stakeholder participation in decision-making. Future biodiversity conservation would benefit from an extended and better-managed network of PAs, additional novel funding opportunities, including the private sector, and enhanced co-governance. However, it will be critical to find sustainable solutions to potential conflicts between conservation goals and other socio-economic objectives and to resolve inconsistencies across sectoral policies.
Located in Library / RBINS Staff Publications 2022
Book Reference Environmental impacts of offshore wind farms in the Belgian part of the North Sea: Attraction, avoidance and habitat use at various spatial scales
Located in Library / RBINS Staff Publications 2021
Inbook Reference Occurrence of intense bird migration events at rotor height in Belgian offshore wind farms and curtailment as possible mitigation to reduce collision risk
Located in Library / RBINS Staff Publications 2021
Inbook Reference Executive summary: Attraction, avoidance and habitat use at various spatial scales
Located in Library / RBINS Staff Publications 2021
Techreport Reference Environmental Impacts of Offshore Wind Farms in the Belgian Part of the North Sea: Getting ready for offshore wind farm expansion in the North Sea.
Located in Library / RBINS Staff Publications 2022
Techreport Reference Turbine size impacts the number of seabird collisions per installed megawatt and offers possibilities for mitigation.
As the offshore wind energy technology is rapidly progressing and because wind turbines at sea have a relatively short life span, repowering scenarios are already being discussed for the oldest wind farms. Ongoing developments result in larger wind turbines and an increased open airspace between turbines. Despite taller towers having larger rotor swept zones and therefore a higher collision risk area compared to smaller-sized turbines, there is increasing evidence that fewer but larger, more power-efficient turbines may have a lower collision rate per installed megawatt. As such, turbine size can offer an opportunity to mitigate seabird fatalities by increasing the clearance below the lower rotor tip. We assessed the seabird collision risk for a hypothetical repowering scenario of the first offshore wind farm zone in Belgian waters with larger turbines and the effect of an additional increase in hub height on that theoretical collision risk. For all species included in this exercise, the estimated collision risk decreased in a repowering scenario with 15 MW turbines (40.4% reduction on average) because of higher clearance between the lower tip of the turbine rotor and the sea level, and the need for a lower number of turbines per km². Increasing the hub height of those 15 MW turbines with 10 m, further decreases the expected number of seabird collisions with another 37% on average. However, terrestrial birds and bats also migrate at sea and the effect of larger turbines on these taxa is less clear. Possibly even more terrestrial birds and bats are at risk of collision compared to the current turbines. So, while larger turbines and increasing the hub height can be beneficial for seabirds, this likely needs to be applied in combination with curtailment strategies, which stop the turbines during heavy migration events, to reduce the impact on other species groups.
Located in Library / RBINS Staff Publications 2022
Unpublished Reference CROW: Visualize bird migration in your browser
Every spring and autumn, millions of birds migrate over Europe. They mainly do this at high altitudes and at night, making this phenomenon largely invisible to us. But not for weather radars! We developed the open source web application “CROW” so you can explore these data directly in your browser. CROW pulls vertical profile data (vpts) from a public repository, calculates migration traffic rate (MTR), bird density and other variables, and visualizes these as interactive charts. The application can be hosted on a static file server and only visualizes data from one radar at a time, making it highly portable and scalable. CROW was jointly developed by the Research Institute for Nature and Forest (INBO) and the Royal Meteorological Institute of Belgium (RMI) in collaboration with the Royal Belgian Institute for Natural Sciences (RBINS), with financial support from the Belgian Science Policy Office (BelSPO valorisation project CROW). It is deployed at https://www.meteo.be/birddetection to show bird migration in real time across the Benelux. We are planning to deploy it for data in the ENRAM data repository (https://enram.github.io/data-repository/) as well.
Located in Library / RBINS Staff Publications 2022
Article Reference Validating a biophysical dispersal model with the early life-history traits of common sole (Solea solea L.)
Larval dispersal and juvenile survival are crucial in determining variation in recruitment, stock size and adult distribution of commercially important fish. This study investigates the dispersal of early-life stages of common sole (Solea solea L.) in the southern North Sea, both empirically and through modeling. Age at different life-history events of juvenile flatfish sampled along the coasts of Belgium, the Netherlands and the United Kingdom in 2013, 2014 and 2016, was determined through the counting of daily growth rings in the otoliths. Juveniles captured between August and October were estimated to be on average 140 days old with an average pelagic larval duration of 34 days. The hatching period was esti- mated between early April and mid-May followed by arrival and settlement in the nurseries between May and mid-June. Growth rates were higher off the Belgian coast than in the other nursery areas, especially in 2013, possibly due to a post-settlement differentiation. Empirical pelagic larval duration and settlement distributions were compared with the L AR- VAE &C O larval dispersal model, which combines local hydrodynamics in the North Sea with sole larval behavior. Yearly predicted and observed settlement matched partially, but the model estimated a longer pelagic phase. The observations fitted even better with the mod- elled average (1995–2015) distribution curves. Aberrant results for the small juvenile sole sampled along the UK coast in March 2016, led to the hypothesis of a winter disruption in the deposition of daily growth rings, potentially related to starvation and lower food availabil- ity. The similarities between measured and modelled distribution curves cross-validated both types of estimations and accredited daily ageing of juveniles as a useful method to cali- brate biophysical models and to understand early-life history of fish, both important tools in support of efficient fisheries management strategies.
Located in Library / RBINS Staff Publications 2021