Plesiadapidae are among the most successful mammal families of the Paleocene, but in North America they disappear abruptly around the Paleocene-Eocene boundary. In contrast, in Europe, they survive a few million years into the Eocene, although only as the genus Platychoerops. The latest Paleocene deposits of Petit-P^atis (Paris Basin, France) have produced three new plesiadapid species, one of each genus known in Europe: Plesiadapis ploegi, sp. nov., Platychoerops boyeri, sp. nov., and Chiromyoides mauberti, sp. nov. Each of these new species is represented by the very characteristic upper incisor, thus ascertaining their concomitant presence and in particular the spatial and temporal coexistence of Plesiadapis and Platychoerops. Plesiadapis ploegi, sp. nov., is morphologically intermediate between Plesiadapis tricuspidens and Platychoerops russelli, with a tricuspid I1 typical of Plesiadapis and a semimolariform p4 closer to Platychoerops. Its relatively high morphological variability is illustrated. Platychoerops boyeri, sp. nov., has the simple derived I1 of all Platychoerops and a p4 slightly more molariform than that of Ples. ploegi. Chiromyoides mauberti, sp. nov., is closest to Chiromyoides campanicus, but it is smaller and has a particular I1 with multiple posterocones. The systematic position of ‘Platychoerops’ georgei is discussed; this taxon is considered a chimera, and its type I1 belongs to either Chiromyoides or Plesiadapis. Cladistic analysis highlights the paraphyly or polyphyly of all genera of Plesiadapidae. Finally, there is some indication of morphological convergences between European and North American plesiadapids, which may be the result of similar environmental changes on both continents just before the Paleocene-Eocene boundary.
Located in
Library
/
RBINS Staff Publications 2018
The aim of EKLIPSE is to develop a mechanism to inform European-scale policy on biodiversity and related environmental challenges. This paper considers two fundamental aspects of the decision-support mechanism being developed by EKLIPSE: 1) the engagement of relevant actors from science, policy and society to jointly identify evidence for decision making; and 2) the networking of scientists and other holders of knowledge on biodiversity and other relevant evidence. The mechanism being developed has the potential not only to build communities of knowledge holders but to build informal networks among those with similar interests in evidence, be they those that seek to use evidence or those who are building evidence, or both. EKLIPSE has been successful in linking these people and in contributing to building informal networks of requesters of evidence, and experts of evidence and its synthesis. We have yet to see, however, significant engagement of formal networks of knowledge holders. Future success, however, relies on the continued involvement with and engagement of networks, a high degree of transparency within the processes and a high flexibility of structures to adapt to different requirements that arise with the broad range of requests to and activities of EKLIPSE. key messages EKLIPSE develops a mechanism to inform policy on biodiversity and related environmental challenges. EKLIPSE operates at a European scale, bringing together policy-makers and knowledge holders from both science and society. EKLIPSE promotes the networking of scientists and other holders of knowledge on biodiversity and other relevant evidence.
Located in
Library
/
RBINS Staff Publications 2018