-
Phylogenetic analysis of the Baikalodrilus species flock (Annelida: Clitellata: Naididae), an endemic genus to Lake Baikal (Russia)
-
Lake Baikal is populated by an endemic genus of oligochaetes (Baikalodrilus), which currently comprises 24 morphospecies. The genus can be considered as a ‘species flock’. However, the validity of many species is questionable: the great similarity in their description and the lack of unequivocal diagnostic characters often lead species identification to an impasse. In order to clarify the systematics of this genus, we analysed two nuclear and two mitochondrial DNA markers of 40 Baikalodrilus specimens. DNA and morphological approaches are mostly congruent in suggesting ten candidate species, although two additional species are suspected. A reassessment of the taxonomic value of the morphological characteristics of Baikalodrilus suggests that there are few that can be used as distinctive, specific criteria in the genus. The association between candidate and nominal species remains problematic, except for three species identified prior to molecular analyses. Baikalodrilus trituberculum sp. nov. is described. Phylogenetic inferences suggests that the earliest split in Baikalodrilus and the time of divergence of most lineages corresponding to species are consistent with the hypothesis of a general rearrangement of the Baikal fauna, following major environmental changes due to a general cooling in the Early Pleistocene.
Located in
Library
/
RBINS Staff Publications 2019
-
PSI analysis of multi-sensor archive data for urban geohazard risk management: a case-study from Brussels
-
Located in
Library
/
RBINS Staff Publications 2017
-
Subsidence Related To Groundwater Pumping For Breweries in Belgium
-
Located in
Library
/
RBINS Staff Publications 2017
-
Assessing Vertical Elevation Changes of Coastal Areas in Southern Chile to Improve The Understanding of Their Paleotsunami Sedimentary Records
-
Located in
Library
/
RBINS Staff Publications 2017
-
Publishing data to support the fight against human vector-borne diseases
-
Vector-borne diseases are responsible for more than 17% of human cases of infectious diseases. In most situations, effective control of debilitating and deadly vector-bone diseases (VBDs), such as malaria, dengue, chikungunya, yellow fever, Zika and Chagas requires up to-date, robust and comprehensive information on the presence, diversity, ecology, bionomics and geographic spread of the organisms that carry and transmit the infectious agents. Huge gaps exist in the information related to these vectors, creating an essential need for campaigns to mobilise and share data. The publication of data papers is an effective tool for overcoming this challenge. These peer-reviewed articles provide scholarly credit for researchers whose vital work of assembling and publishing well-described, properly formatted datasets often fails to receive appropriate recognition. To address this, GigaScience’s sister journal GigaByte partnered with the Global Biodiversity Information Facility (GBIF) to publish a series of data papers, with support from the Special Programme for Research and Training in Tropical Diseases (TDR), hosted by the World Health Organisation (WHO). Here we outline the initial results of this targeted approach to sharing data and describe its importance for controlling VBDs and improving public health.
Located in
Library
/
RBINS Staff Publications 2022
-
Where are we now with European forest multi-taxon biodiversity and where can we head to?
-
The European biodiversity and forest strategies rely on forest sustainable management (SFM) to conserve forest biodiversity. However, current sustainability assessments hardly account for direct biodiversity indicators. We focused on forest multi-taxon biodiversity to: i) gather and map the existing information; ii) identify knowledge and research gaps; iii) discuss its research potential. We established a research network to fit data on species, standing trees, lying deadwood and sampling unit description from 34 local datasets across 3591 sampling units. A total of 8724 species were represented, with the share of common and rare species varying across taxonomic classes: some included many species with several rare ones (e.g., Insecta); others (e.g., Bryopsida) were repre sented by few common species. Tree-related structural attributes were sampled in a subset of sampling units (2889; 2356; 2309 and 1388 respectively for diameter, height, deadwood and microhabitats). Overall, multi taxon studies are biased towards mature forests and may underrepresent the species related to other developmental phases. European forest compositional categories were all represented, but beech forests were over represented as compared to thermophilous and boreal forests. Most sampling units (94%) were referred to a habitat type of conservation concern. Existing information may support European conservation and SFM strategies in: (i) methodological harmonization and coordinated monitoring; (ii) definition and testing of SFM indicators and thresholds; (iii) data-driven assessment of the effects of environmental and management drivers on multi-taxon forest biological and functional diversity, (iv) multi-scale forest monitoring integrating in-situ and remotely sensed information.
Located in
Library
/
RBINS Staff Publications 2023
-
Collagen stable isotopes provide insights into the end of the mammoth steppe in the central East European plains during the Epigravettian
-
Higher δ15N values in bone collagen of mammoth (Mammuthus primigenius) compared with coeval large herbivores is a classic trait of the mammoth steppe. An exception applies to the Epigravettian site of Mezhyrich (ca. 18–17.4 ka cal BP) in the central East European plains, where mammoth bones have δ15N values equivalent to or in a lower range than those of horse specimens (Equus sp.). We expanded our preliminary dataset to a larger sampling size of mammoth, other large herbivores, and carnivores from contemporaneous and nearby sites of Buzhanka 2, Eliseevichi, and Yudinovo. The unusual low mammoth δ15N values were confirmed at Buzhanka 2 and for some specimens from Eliseevichi, while most individuals from Yudinovo displayed the expected high δ15N values, meaning similar to those of the large canids. The possibility of a contrast in migration pattern is not supported since the δ34S values, a marker of mobility, do not correlate with the δ15N values of mammoth bone collagen. No clear chronological tendency could be revealed, at least not at the scale of radiocarbon dating. The low range in δ15N values is likely to reflect a change in the specific niche of the mammoth in the southern part of its distribution.
Located in
Library
/
RBINS Staff Publications 2018
-
Relation between mitochondrial DNA hyperdiversity, mutation rate and mitochondrial genome evolution in Melarhaphe neritoides (Gastropoda: Littorinidae) and other Caenogastropoda
-
Mitochondrial DNA hyperdiversity is primarily caused by high mutation rates (µ) and has potential implications for mitogenome architecture and evolution. In the hyperdiverse mtDNA of Melarhaphe neritoides (Gastropoda: Littorinidae), high mutational pressure generates unusually large amounts of synonymous variation, which is expected to (1) promote changes in synonymous codon usage, (2) reflect selection at synonymous sites, (3) increase mtDNA recombination and gene rearrangement, and (4) be correlated with high mtDNA substitution rates. The mitogenome of M. neritoides was sequenced, compared to closely related littorinids and put in the phylogenetic context of Caenogastropoda, to assess the influence of mtDNA hyperdiversity and high µ on gene content and gene order. Most mitogenome features are in line with the trend in Mollusca, except for the atypical secondary structure of the methionine transfer RNA lacking the TΨC-loop. Therefore, mtDNA hyperdiversity and high µ in M. neritoides do not seem to affect its mitogenome architecture. Synonymous sites are under positive selection, which adds to the growing evidence of non-neutral evolution at synonymous sites. Under such non-neutrality, substitution rate involves neutral and non-neutral substitutions, and high µ is not necessarily associated with high substitution rate, thus explaining that, unlike high µ, a high substitution rate is associated with gene order rearrangement.
Located in
Library
/
RBINS Staff Publications 2018
-
A scientific name for Pacific oysters
-
Located in
Library
/
RBINS Staff Publications 2018
-
Effects of hydrocarbon extraction on freshwaters
-
Located in
Library
/
RBINS Staff Publications 2022 OA