The unparalleled biodiversity of Lake Tanganyika (Africa) has fascinated biologists for over a century; its unique cichlid communities are a preferred model for evolutionary research. Although species delineation is, in most cases, relatively straightforward, higher-order classifications were shown not to agree with monophyletic groups. Here, traditional morphological methods meet their limitations. A typical example are the tropheine cichlids currently belonging to Simochromis and Pseudosimochromis. The affiliations of these widespread and abundant cichlids are poorly understood. Molecular work suggested that genus and species boundaries should be revised. Moreover, previous morphological results indicated that intraspecific variation should be considered to delineate species in Lake Tanganyika cichlids. We review the genera Simochromis and Pseudosimochromis using an integrative approach. Besides a morphometric study and a barcoding approach, monogenean Cichlidogyrus (Platyhelminthes: Ancyrocephalidae) gill parasites, often highly species-specific, are used as complementary markers. Six new species are described. Cichlidogyrus raeymaekersi sp. nov., C. muterezii sp. nov. and C. banyankimbonai sp. nov. infect S. diagramma. Cichlidogyrus georgesmertensi sp. nov. was found on S. babaulti and S. pleurospilus, C. franswittei sp. nov. on both S. marginatus and P. curvifrons and C. frankwillemsi sp. nov. only on P. curvifrons. As relatedness between Cichlidogyrus species usually reflects relatedness between hosts, we considered Simochromis monotypic because the three Cichlidogyrus species found on S. diagramma belonged to a different morphotype than those found on the other Simochromis. The transfer of S. babaulti, S. marginatus, S. pleurospilus and S. margaretae to Pseudosimochromis was justified by the similarity of their Cichlidogyrus fauna and the intermediate morphology of S. margaretae. Finally parasite data also supported the synonymy between S. pleurospilus and S. babaulti, a species that contains a large amount of geographical morphological variation.
Located in
Library
/
RBINS Staff Publications
The reconstruction of the environment and the human population history of the Nile Valley during the Late Pleistocene have received a lot of attention in the literature thus far. There seems to be a consensus that during MIS2 extreme dry conditions prevailed over north-eastern Africa, which was apparently not occupied by humans. The Nile Valley seems to be an exception; numerous field data have been collected suggesting an important population density in Upper Egypt during MIS2. The occupation remains are often stratified in, or at least related to, aeolian and Nile deposits at some elevation above the present-day floodplain. They are rich in lithics and animal bones, mainly fish, illustrating the exploitation of the Nile Valley by the Late Palaeolithic inhabitants. The fluvial processes active during that period have traditionally been interpreted as a continuously rising highly braided river. In this paper we summarize the evidence thus far available for the Late Pleistocene on the population densities in the Nile Valley, and on the models of Nilotic behaviour. In the discussion we include data on the environmental conditions in Eastern Africa, on the aeolian processes in the Western Desert of Egypt derived from satellite images, 14C and OSL dates, in order to formulate a new model that explains the observed high remnants of aeolian and Nilotic deposits and the related Late Palaeolithic sites. This model hypothesizes that, during the Late Pleistocene, and especially the LGM, dunes from the Western Desert invaded the Nile Valley at several places in Upper Egypt. The much reduced activity of the White Nile and the Blue Nile was unable to evacuate incoming aeolian sand and, as a consequence, several dams were created in the Upper Egyptian Nile Valley. Behind such dams the created lakes offered ideal conditions for human subsistence. This model explains the occurrence of Late Palaeolithic hunter–fisher–gatherers in a very arid environment with very low Nile flows, even in late summer. Keywords: River Nile; Late Palaeolithic; Egypt; Geomorphology; Late Glacial Maximum (LGM); Late Pleistocene; Endorheic environment
Located in
Library
/
RBINS Staff Publications