-
Congo Basin: From Carbon To Fishes –The Cobafish Project
-
Located in
Library
/
RBINS Staff Publications
-
Electronique et géosciences: développement de capteurs environnementaux adaptés à la haute atmosphère et aux milieux souterrains.
-
Les technologies liées à l’automatisation et au traitement numérique du signal d’instruments de mesure se sont largement démocratisées ces dernières années. C’est en partie dû à la prolifération des plateformes d’échange en électronique et aux progrès constants de miniaturisation et d’intégration des circuits. De plus, l’accès aisé à des catalogues de composants en ligne et à des services de prototypage de carte électroniques permettent aujourd’hui à des scientifiques, non professionnels en électronique, de concevoir et fabriquer eux-mêmes des équipements de mesure adaptés aux milieux naturels qu’ils étudient. A titre d’exemple, un petit capteur de température autonome, le « Niphargus » a été développé à l’Institut des Sciences naturelles de Belgique (Service géologique de Belgique, Direction Terre et Histoire de la Vie) dans le but de surveiller l’évolution en température de milieux naturels (grottes, sols et rivières). L'instrument est basé sur un capteur de température à diode de silicium monolithique, cette technologie allie la stabilité de mesure d’un thermomètre de laboratoire à résistance de platine avec la sensibilité des thermistances habituellement intégrées aux instruments miniaturisés. Le Niphargus est conçu pour être produit à faible coût, est capable d’enregistrer la température avec une résolution inférieure à 0.01°C entre -50°C et +125°C, dispose d’une autonomie de plusieurs années, et peut-être calibré facilement à ±0.1°C entre 0 et 30°C. Ils ont été notamment déployés dans plusieurs grottes belges et étrangères. Dans le cas de la grotte de Han-sur-Lesse (Belgique), par exemple, des enregistrements effectués au printemps 2013 ont permis détecter un cycle diurne de variation de la température de l’air de la salle du Dôme d’une amplitude de 0,005°C. Le « Stratochip » est un autre exemple de développement basé sur l’intégration de technologies récentes dérivées des aéronefs civils autonomes (microcontrôleur puissant, centrale inertielle et récepteur GNSS miniatures, transmissions de données longue portée). Cet équipement permet l’observation de la terre et de l’atmosphère à des altitudes allant de 1.000 à 32.000 mètres, et sur des distances de plusieurs dizaines de kilomètres. Son principe de fonctionnement est simple et innovant : la sonde d’observation transportée par deux ballons gonflés à l’hélium. À une altitude prédéterminée, un des ballons est largué, stabilisant rapidement le taux de montée de l’équipement et permettant un vol en plateau au-dessus d’une zone prédéfinie. Le système peut ensuite se détacher du deuxième ballon et atterrir au moyen d’un parachute. Le profil de vol, les territoires survolés et la zone d’atterrissage peuvent être calculés de façon très précises avant et pendant le vol grâce aux modèles de prédiction de directions et vitesses des vents (données NOAA), affinés par les mesures effectuées en temps réel par la sonde. Cet équipement a notamment été utilisé dans la cartographie d’un plateau karstique de la Sierra Arana (Andalousie, Espagne), et a produit une mosaïque d’images ortho-rectifiées et un modèle d’élévation du terrain sur une surface de plus 200km² avec une résolution d’1 mètre par pixel.
Located in
Library
/
RBINS Staff Publications
-
Aerial imagery and structure-from-motion based DEM reconstruction of region-sized areas (Sierra Arana, Spain and Namur Province, Belgium) using an high-altitude drifting balloon platform.
-
A new type of untethered balloon based mapping platform allows affordable remote sensing applications from higher altitudes and with a greater range and payload capacity than common motorized UAV’s. The airborne device, called “Stratochip”, is based on a dual helium balloons configuration. At a defined altitude (comprised between 1000 and 30000m), the first balloon is released, drastically reducing the platform climbing rate. The payload (up to 10kg) can then drift in a sub-horizontal trajectory until it leaves a pre-defined area of interest. Leaving the pre-defined area, the second balloon is released and the payload is recovered after a parachute landing. The predicted flight path of the Stratochip, launch site and surveyed area are calculated using both forecasted (NOAA model) and real-time (inborne instruments) meteorological data, along with the physical parameters of the balloons and parachute. The predicted recovery area can also be refined in real-time to secure and facilitate equipment retrieval. In this study, we present the results of two cartographic campaigns made in Belgium (Famennian outcrops near Beauraing, Namur Province) and Spain (karstic field in the Eastern part of Sierra Arana, Granada region). Those campaigns aimed to test the usability of the Stratochip to survey a large area at medium altitudes (3000m-8000m) and produced an updated Digital Elevation Model and orthophoto mosaic of those regions. For that purpose, the instrument installed in the Stratochip payload was constituted of a digital camera stabilized with two IMU’s and two brushless motors. An automated routine then tilted the camera at predefined angles while taking pictures of the ground. This technique allowed to maximize the photogrammetric information collected on a single pass flight, and improved the DEM reconstruction quality, using structure-from-motion algorithms. Three sets of data (DEM + orthophoto) were created from those campaigns, using pictures sets collected a different elevations. A 1m/pixel ground resolution set covering an area of about 200km² and mapping the eastern part of the Sierra Arana (Andalucía, Spain) includes a kartsic field directly to the south-east of the ridge and the cliffs of the “Riscos del Moro”. A 4m/pixel ground resolution set covering an area of about 900km² includes the landslide active Diezma region (Andalucía, Spain) and the water reserve of Francisco Abellan lake. The third set has a 3m/pixel ground resolution, covers about 100km² and maps the Famennian rocks formations, known as part of “La Calestienne”, outcropping near Beauraing and Rochefort in the Namur Province (Belgium). The DEM and orthophoto’s have been referenced using ground control points from satellite imagery (Spain, Belgium) and DPGS (Belgium). The quality of produced DEM were then evaluated by comparing the level and accuracy of details and surface artefacts between available topographic data (SRTM- 30m/pixel, topographic maps) and the three Stratochip sets. This evaluation showed that the models were in good correlation with existing data, and can be readily be used in geomorphology, structural and natural hazard studies.
Located in
Library
/
RBINS Staff Publications
-
High-altitude free balloon trajectory predictions and applications in remote sensing
-
A new type of untethered balloon based mapping platform allows affordable remote sensing applications from higher altitudes and with a greater range and payload capacity than common motorized UAV’s. The airborne device, called “Stratochip”, is based on a dual helium balloons configuration. At a defined altitude (comprised between 1000 and 30000m), a GPS based controller automatically releases the first balloon, drastically reducing the ascent rate. The payload (up to 10kg) can then float in a sub-horizontal trajectory until it leaves a pre-defined area of interest. At this point, the second balloon is released and the payload is recovered after a parachute landing. The predicted flight path of the Stratochip, launch site and surveyed area are calculated using physical parameters of balloons and parachute, as well as sounding meteorological data (NOAA windgram model) and real-time flight rates, along with the. The predicted recovery area can also be refined in real-time to secure and facilitate equipment retrieval. The Stratochip was tested to survey large areas at medium altitudes (1500m-8000m) in mountainous areas (Sierra Nevada, Spain) and hilly landscapes (Belgium). In a few flights, the platform allowed to produce several hundred squares kilometers of Digital Elevation Models and orthophoto mosaics. For that purpose, the instrument installed in the Stratochip payload was constituted of a digital camera stabilized with two IMU’s and two brushless motors. An automated routine then tilted the camera at predefined angles while taking pictures of the ground. This technique allowed to maximize the photogrammetric information collected on a single pass flight, and improved the DEM reconstruction quality, using structure-from-motion algorithms. Recontructed DEM’s and orthophoto’s have been referenced using ground control points from satellite imagery (Spain, Belgium) and DPGS (Belgium). The quality of produced DEM were then evaluated by comparing the level and accuracy of details and surface artifacts with available topographic data. This evaluation showed good correlation with existing data, improved the detail level in some areas and can be readily be used in Geomorphology, Structural Geology and Natural Hazards studies.
Located in
Library
/
RBINS Staff Publications
-
Sandy aeolian deposits from the Gent Formation (Flanders, Belgium): lithostratigraphy, geomorphology and age. XIX Inqua congress, Nagoya, Japan.
-
Located in
Library
/
RBINS Staff Publications
-
3D and Challenging Materials: Guidelines for Different 3D Digitisation Methods for Museum Collections with Varying Material Optical Properties.
-
Located in
Library
/
RBINS Staff Publications
-
Brabantophyton, a new genus with stenokolealean affinities from a Middle to earliest Upper Devonian locality from Belgium
-
A new taxon with stenokolealean affinities, Brabantophyton runcariense gen. et sp. nov., is described from seven pyrite permineralized axes collected from the mid Givetian to earliest Frasnian (late Middle to earliest Upper Devonian) locality of Ronquières (Belgium). The specimens include stems and lateral organs. The stems are characterized by a protostele dissected into three primary ribs, each of them dividing into two secondary ribs. The protostele shows a central protoxylem strand and numerous strands distributed along the midplanes of the ribs. The vascular supply to lateral organ is composed of two pairs of traces, produced at the same time by the two ribs issued from a single primary rib of the protostele. Within each pair, the shape and the size of the traces are unequal: one is T-shaped and the other is oval to reniform. The T-shaped traces of each pair face each other. The inner cortex of the lateral organs is parenchymatous and the outer cortex is sparganum-like. The specimens of Brabantophyton runcariense show many similarities with the stenokolealean genus Crossia virginiana Beck and Stein, but the vascular supply of lateral organs of the latter consists of a more symmetrical and distinctively simpler pair of traces. Brabantophyton represents the first report of the Stenokoleales in southeastern Laurussia. The characteristics of the Brabantophyton protostele compare better with the anatomy of the radiatopses, and, within the latter, particularly with basal seed plants.
Located in
Library
/
RBINS Staff Publications
-
DNA barcoding Congolese snakes
-
Located in
Library
/
RBINS Staff Publications
-
Validation of the DNA barcoding approach to survey ant communities in the Ecuadorian Andes
-
Located in
Library
/
RBINS Staff Publications
-
DNA barcoding of fire and thief ants (genus Solenopsis) of the Ecuadorian Andes as a tool for biodiversity research
-
DNA BARCODING OF FIRE ANTS AND THIEF ANTS (GENUS SOLENOPSIS) OF THE ECUADORIAN ANDES AS A TOOL FOR BIODIVERSITY RESEARCH SONET, G. (1), Nagy, Z. T. (1), Jacquemin, J. (2), Wauters, N. (2), Delsinne, T. (2), Leponce, M. (2) (1) Joint Experimental Molecular Unit, Royal Belgian Institute of Natural Sciences, Brussels & Royal Museum for Central Africa, Tervuren, Belgium (2) Royal Belgian Institute of Natural Sciences & Université Libre de Bruxelles, Belgium Lightning Talk, Barcoding Insects 2, Napier 208, Friday, 15:00 to 15:07 Poster Location: B25 Members of the genus Solenopsis are among the most abundant ants in tropical rainforests. They are represented by more than 200 described species worldwide and some are dreadful invasive species. The identification to the species level is hampered by a dearth of diagnostic morphological characters and represents a serious limitative step in biodiversity inventories and in the study of invasive species. We set up and validated a DNA barcoding procedure to identify ants of the genus Solenopsis collected in the Podocarpus National Park of the Ecuadorian Andes. Complete specimens were used for DNA extraction and subsequently preserved as vouchers to allow further morphological analysis. More than 14 new molecular operational taxonomic units were identified by the standard DNA barcode fragment. In some cases specimens from a single morpho-species occurring at different altitudes could be distinguished. This study resulted in an appropriate laboratory protocol and a reference library useful to identify ants of the genus Solenopsis in the Ecuadorian Andes.
Located in
Library
/
RBINS Staff Publications