Skip to content. | Skip to navigation

Personal tools

You are here: Home / Library / RBINS Staff Publications / How is the connectivity of sole larvae affected by wind and temperature changes in the Southern North Sea?

Geneviève Lacroix, Gregory E Maes, Loes J Bolle, and Filip A Volckaert (2012)

How is the connectivity of sole larvae affected by wind and temperature changes in the Southern North Sea?

In: ICES Annual Science Conference, Bergen (Norway), 17-21 Sept. 2012, vol. ICES CM/2012 E:17.

Connectivity throughout the life cycle of flatfish remains an open question, especially at the early life stages. Also the impact of anthropogenic factors, such as climate change, on larval dispersal remains poorly known. The case of sole (Solea solea) is of particular interest because it is one of the most valuable commercial species in the North Sea. It is important to understand how the retention/dispersal of larvae would be affected by climate change in order to propose appropriate measures for the management of the North Sea stock. The transport of sole larvae from the spawning grounds to the nurseries is driven by hydrodynamic processes but the final dispersal pattern and larval abundance may be affected by behavioural and environmental factors. An increase of temperature could affect for instance the spawning period, the duration of the pelagic stage and the mortality of eggs and larvae. Modifications in the magnitude, variability and/or direction of the wind regime might affect egg and larval retention and dispersal through changes in the hydrodynamics. We compare scenarios of a particle-tracking transport model (IBM) coupled to a 3D hydrodynamic model (COHERENS) to investigate the impact of climate change, through temperature increase and wind regime change. The model has been implemented in the area between 48.5°N-4°W and 57°N-10°E over the period 1995 to 2010. Sensitivity of connectivity between spawning grounds and nurseries to climate change is assessed by estimating the impact of hypothetical (i) temperature increase and (ii) changes in wind magnitude/direction.
Abstract of an Oral Presentation or a Poster
Related content
Natural Environment
ECODAM
Menu

 
RBINS Staff
add or import reference(s)
  • add a PDF paper
    (Please follow editors copyrights policies)
  • add a PDF poster