Skip to content. | Skip to navigation

Personal tools

You are here: Home / Library / RBINS Staff Publications / Multimodal particle size distributions of fine-grained sediments: mathematical modeling and field investigation

Byung J. Lee, Erik Toorman and Michael Fettweis (2014)

Multimodal particle size distributions of fine-grained sediments: mathematical modeling and field investigation

Ocean Dynamics, 64:429-441.

Multimodal particle size distributions (PSDs) of fine-grained cohesive sediments are common in marine and coastal environments. The curve-fitting software in this study decomposed such multimodal PSDs into subordinate log-normal PSDs. Four modal peaks, consisting of four-level ordered structures of primary particles, flocculi, microflocs, and macroflocs, were identified and found to alternately rise and sink in a flow-varying tidal cycle due to shear-dependent flocculation. The four modal PSD could be simplified further into two discrete size groups of flocculi and flocs. This allowed the development of a two-class population balance equation (TCPBE) model with flocculi and flocs to simulate flocculation involving multimodal PSDs. The one-dimensional vertical (1-DV) TCPBE model further incorporated the Navier-Stokes equation with the k-ε turbulence closure and the sediment mass balance equations. Multimodal flocculation as well as turbulent flow and sediment transport in a flow-varying tidal cycle could be simulated well using the proposed model. The 1-DV TCPBE was concluded to be the simplest model that is capable of simulating multimodal flocculation in the turbulent flow field of marine and coastal zones.

Document Actions

Menu

 
RBINS Staff
add or import reference(s)
  • add a PDF paper
    (Please follow editors copyrights policies)
  • add a PDF poster