Skip to content. | Skip to navigation

Personal tools

 
 
 
 

 
                 
You are here: Home / Associated publications / Belgian Journal of Zoology / Bibliographic References / Evolutionary conservation of the initial eye genetic pathway in planarians

D Pineda, J Gonzalez, M Marsal and E Salo (2001)

Evolutionary conservation of the initial eye genetic pathway in planarians

BELGIAN JOURNAL OF ZOOLOGY, 131(S1):77-82.

Eyes of all organisms share a common function, visual perception. In addition, the different types of eyes (camera-, mirror-, and compound) are present in different phyla and share the same visual pigment, rhodopsin, and the same initial genetic pathway triggered by the master control gene Pax-6. Although the developmental mechanisms are quite diverse, all data suggest that the different eye types found in metazoans derive from a common prototype and evolved in the different phyla by parallelism, intercalating new genes independently. In this manuscript, we describe the isolation and characterization of several genes that constitute the eye gene regulatory network in the planarian Girardia tigrina (Platyhelminthes; Turbellaria; Tricladida). Two Pax-6 genes, GtPax6A and GtPax6B, do not show an obvious correspondence to the two Pax-6 of Drosophila ey and toy. Two sine oculis genes Gtsix-1 and Gtsix-3 are closely related to the Six 1-2 and Six-3 families respectively. Furthermore, we demonstrate that the opsin gene Gtops shows greater similarity to mollusc opsins. GtPax-6B is expressed in both cell types of the planarian eye spots: the photoreceptor cells and the pigmented cells. In addition, Gtsix-1 and the opsin gene Gtops are expressed in the photoreceptor cells. This expression pattern is present throughout the whole eye regeneration process and maintained in adults. Gtops double strand RNA injection does not inhibit eye regeneration but produces light insensitive eyes due to the absence of photopigment. The loss of function of Gtsix-1 by dsRNA injection produces a non-eye phenotype in head regenerating blastemas, while the injected intact adult heads show a loss of the differentiated state of the photoreceptor cells through inhibition of opsin expression and the production of a blind phenotype. Our results on the prototypic eye spots of Platyhelminthes provide farther important support for the idea of a universally conserved early eye genetic cascade in the Metazoa.

Platyhelminthes; planarian; homeobox; opsin; eye evolution; regeneration
9th International Symposium on the Biology of the Turbellaria (ISBT), BARCELONA, SPAIN, JUN, 2000
BJZ

ISSN 2295-0451 (online version)
ISSN 0777-6279 (printed version)
impact factor 2015: 0,87.

Editor-in-Chief:
Prof. Dr. Isa Schön
Royal Belgian Institute of Natural Sciences
Vautierstraat 29
1000 Brussels, Belgium

 



1863-1903
Annales de la Société malacologique de Belgique
 
1903-1923
​Annales de la Société royale malacologique et zoologique de Belgique
 
1923-1989
Annales de la Société Royale Zoologique de Belgique
 
1989-
Belgian Journal of Zoology