Skip to content. | Skip to navigation

Personal tools

You are here: Home
3073 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Late Stone Age human remains from Ishango (Democratic Republic of Congo): New insights on Late Pleistocene modern human diversity in Africa
Although questions of modern human origins and dispersal are subject to intense research within and outside Africa, the processes of modern human diversification during the Late Pleistocene are most often discussed within the context of recent human genetic data. This situation is due largely to the dearth of human fossil remains dating to the final Pleistocene in Africa and their almost total absence from West and Central Africa, thus limiting our perception of modern human diversification within Africa before the Holocene. Here, we present a morphometric comparative analysis of the earliest Late Pleistocene modern human remains from the Central African site of Ishango in the Democratic Republic of Congo. The early Late Stone Age layer (eLSA) of this site, dated to the Last Glacial Maximum (25–20 Ky), contains more than one hundred fragmentary human remains. The exceptional associated archaeological context suggests these remains derived from a community of hunter-fisher-gatherers exhibiting complex social and cognitive behaviors including substantial reliance on aquatic resources, development of fishing technology, possible mathematical notations and repetitive use of space, likely on a seasonal basis. Comparisons with large samples of Late Pleistocene and early Holocene modern human fossils from Africa and Eurasia show that the Ishango human remains exhibit distinctive characteristics and a higher phenotypic diversity in contrast to recent African populations. In many aspects, as is true for the inner ear conformation, these eLSA human remains have more affinities with Middle to early Late Pleistocene fossils worldwide than with extant local African populations. In addition, cross-sectional geometric properties of the long bones are consistent with archaeological evidence suggesting reduced terrestrial mobility resulting from greater investment in and use of aquatic resources. Our results on the Ishango human remains provide insights into past African modern human diversity and adaptation that are consistent with genetic theories about the deep sub-structure of Late Pleistocene African populations and their complex evolutionary history of isolation and diversification.
Located in Library / RBINS Staff Publications 2016
Article Reference Species limits, interspecific hybridization and phylogeny in the cryptic land snail complex Pyramidula: The power of RADseq data
Located in Library / RBINS Staff Publications 2016
Article Reference A revision of the Thyropygus allevatus group. Part V: Nine new species of the extended opinatus subgroup, based on morphological and DNA sequence data (Diplopoda: Spirostreptida: Harpagophoridae)
Located in Library / RBINS Staff Publications 2016
Article Reference DNA analyses reveal abundant homoplasy in taxonomically important morphological characters of Eusiroidea (Crustacea, Amphipoda)
Located in Library / RBINS Staff Publications 2016
Article Reference Lanceolaria bogani (Bivalvia: Unionidae), a new species from Vietnam
Located in Library / RBINS Staff Publications 2016
Article Reference Taxonomic review of tropical western Atlantic shallow water Drilliidae (Mollusca: Gastropoda: Conoidea) including descriptions of 100 new species
Located in Library / RBINS Staff Publications 2016
Article Reference Impacts of Climate Change on the Global Invasion Potential of the African Clawed Frog Xenopus laevis
Located in Library / RBINS Staff Publications 2016
Article Reference Looking beneath the tip of the iceberg: diversification of the genus Epimeria on the Antarctic shelf (Crustacea, Amphipoda)
Located in Library / RBINS Staff Publications 2016
Article Reference Patterns of neutral and adaptive genetic diversity across the natural range of Sugar pine (Pinus lambertiana).
Demographic and environmental forces shape geographical patterns of genetic diversity. Knowledge thereof is not only important for evolutionary ecologists but, in light of future climate change, will be of interest to conservation biologists as well. Sugar pine (Pinus lambertiana Dougl.) is an ecologically important species found in mixed conifer forests across western North America. We applied a candidate-genebased environmental study to infer spatial patterns in neutral genetic variation and to identify genetic variants associated with local adaptation to drought. Using a panel of 186 candidate gene single nucleotide polymorphisms (SNP), we genotyped 313 individual trees sampled across the entire state of California, USA. We found evidence for a large-scale subdivision into two genetic clusters along the latitudinal axis and increased genetic similarity among sugar pines within a 200– 300-km boundary. Associating allelic to environmental variation indicated nine putative SNPs related to local adaptation to drought. These results provide insights into neutral population structure across the natural range of sugar pine and further substantiated a key role of the mitochondrial import inner membrane machinery in enhanced tolerance to drought and constitute important steps into unravelling the eco-evolutionary dynamics in sugar pine.
Located in Library / RBINS Staff Publications 2016
Article Reference Inter- and intraspecific variation in the surface pattern of the dermal bones of two sturgeon species
Archaeological bone remains of sturgeon (Acipenser sturio/Acipenser oxyrinchus) from northwestern Europe are often identified to species on the basis of their surface morphology and then used to reconstruct the spatial distribution of the two species through time. The dermal bones of A. sturio are said to have an exterior surface pattern consisting of tubercles, while those of A. oxyrinchus are said to display alveoli. In the present paper, the validity of the surface pattern as a species-specific characteristic is critically assessed. To this purpose, dermal plates from modern, genetically identified museum specimens were studied and the surface morphology observed in a series of archaeological remains was compared with the genetic identifications obtained on these same remains. The analyses show that the surface pattern of dermal bones is related to the size of the individual, with the pattern of small A. oxyrinchus being similar to that of A. sturio. In addition, variations in the surface pattern among the bones of a single individual and within the same bone have been observed. These findings explain previous conflicting results between morphological and genetic identifications and allow the formulation of some recommendations for more accurate morphological identification of isolated archaeological sturgeon dermal bones.
Located in Library / RBINS Staff Publications 2016