Skip to content. | Skip to navigation

Personal tools

You are here: Home
2920 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters
The performance of different atmospheric correction algorithms for the Ocean and Land Colour Instrument (OLCI) on board of Sentinel-3 (S3) is evaluated for retrieval of water-leaving radiance reflectance, and derived parameters chlorophyll-a concentration and turbidity in turbid coastal waters in the Belgian Coastal Zone (BCZ). This is performed using in situ measurements from an autonomous pan-and-tilt hyperspectral radiometer system (PANTHYR). The PANTHYR provides validation data for any satellite band between 400 and 900 nm, with the deployment in the BCZ of particular interest due to the wide range of observed Near-InfraRed (NIR) reflectance. The Dark Spectrum Fitting (DSF) atmospheric correction algorithm is adapted for S3/OLCI processing in ACOLITE, and its performance and that of 5 other processing algorithms (L2-WFR, POLYMER, C2RCC, SeaDAS, and SeaDAS-ALT) is compared to the in situ measured reflectances. Water turbidities across the matchups in the Belgian Coastal Zone are about 20–100 FNU, and the overall performance is best for ACOLITE and L2-WFR, with the former providing lowest relative (Mean Absolute Relative Difference, MARD 7–27\%) and absolute errors (Mean Average Difference, MAD -0.002, Root Mean Squared Difference, RMSD 0.01–0.016) in the bands between 442 and 681 nm. L2-WFR provides the lowest errors at longer NIR wavelengths (754–885 nm). The algorithms that assume a water reflectance model, i.e. POLYMER and C2RCC, are at present not very suitable for processing imagery over the turbid Belgian coastal waters, with especially the latter introducing problems in the 665 and 709 nm bands, and hence the chlorophyll-a and turbidity retrievals. This may be caused by their internal model and/or training dataset not being well adapted to the waters encountered in the BCZ. The 1020 nm band is used most frequently by ACOLITE/DSF for the estimation of the atmospheric path reflectance (67\% of matchups), indicating its usefulness for turbid water atmospheric correction. Turbidity retrieval using a single band algorithm showed good performance for L2-WFR and ACOLITE compared to PANTHYR for e.g. the 709 nm band (MARD 15 and 17\%), where their reflectances were also very close to the in situ observations (MARD 11\%). For the retrieval of chlorophyll-a, all methods except C2RCC gave similar performance, due to the RedEdge band-ratio algorithm being robust to typical spectrally flat atmospheric correction errors. C2RCC does not retain the spectral relationship in the Red and RedEdge bands, and hence its chlorophyll-a concentration retrieval is not at all reliable in Belgian coastal waters. L2-WFR and ACOLITE show similar performance compared to in situ radiometry, but due to the assumption of spatially consistent aerosols, ACOLITE provides less noisy products. With the superior performance of ACOLITE in the 490–681 nm wavelength range, and smoother output products, it can be recommended for processing of S3/OLCI data in turbid waters similar to those encountered in the BCZ. The ACOLITE processor for OLCI and the in situ matchup dataset used here are made available under an open source license.
Located in Library / RBINS Staff Publications 2021
Article Reference Partial revision of the genus Dorysthenes (subgenus Paraphrus ) Thomson, 1861 with overall review of the species planicollis (Bates, (Coleoptera, Cerambycidae, Prioninae, Prionini )
Located in Library / RBINS Staff Publications 2023 OA
Inproceedings Reference Critical analysis of carnivoran mammal success in Europe during the Paleogene
Why are we surrounded by only one group of placental carnivorous mammals (Carnivora: the present-day lions, dogs, bears, and seals among others) today, while at least three other groups of placental mammals (Hyaenodonta, Mesonychia, Oxyaenidae) were in competition with carnivorans 50 million years ago? Since the 1990s, palaeontologists have investigated the success of carnivoraform mammals (including Carnivora) and their crucial adaptations in detail. Analysis of the taxonomic and morphological diversification of these groups in the North American fossil record clearly showed that carnivoraforms outcompeted hyaenodonts and oxyaenids during the Eocene, specifically from around 50 Ma when carnivoraforms began to dominate. It has been suggested that the evolutionary success of carnivorans may have resulted from the broad range of dental adaptations (i.e., a broad variety of diets) conferred by the particular position of their carnassial teeth. Here we document the evolutionary history of the taxonomic diversity as well as the evolution of the body mass of carnivorous mammals that lived in Europe during the Paleogene (66–23 Ma). The results suggest that this competition was diametrically opposed in North America and Europe. Carnivoraforms actually did not become diversified in Europe during the Eocene and thus were not as taxonomically successful in Europe as in North America during that period. Moreover, when one considers body mass, the European hyaenodonts were distinctly more diversified than the carnivoraforms. The situation dramatically changed during the 'Grande Coupure' (around Eocene–Oligocene boundary; ca. 33.9 Ma). This transition corresponds to a major faunal turnover in Europe: during the earliest Oligocene global cooling (Oi-1) event, the Eocene endemic carnivorous fauna were replaced by immigrant taxa (hyaenodonts and carnivorans), mainly from Asia. The Oligocene fossil record shows a diversification of the carnivorans, whereas hyaenodonts were almost only represented by the hypercarnivorous genus Hyaenodon. However, two distinct periods can be discriminated in the Oligocene: the Rupelian was dominated by the Nimravidae and feliforms, while the Chattian was dominated by the caniformians (especially the Amphicyonidae and Ursidae). This turnover seems to be concomitant with the Latest Oligocene Warming and Microbunodon Event. Based on these results, one can hypothesize that the evolution of the European carnivorous mammals might have been profoundly driven by climate modifications (abiotic factors). Grant Information: This abstract is a contribution to the Belspo Brain Pioneer project BR/175/PI/CARNAGES funded by the Belgian Science Policy Office.
Located in Library / RBINS Staff Publications 2018
Article Reference Additional contribution to the knowledge of Asian Aegosomatini with the description of a new species in the genus Aegosoma Audinet-Serville, 1832 (Coleoptera, Cerambycidae, Prioninae)
Located in Library / RBINS Staff Publications 2020
Article Reference Macrodontia crenata (Olivier, 1795) au Suriname (Coleoptera, Cerambycidae, Prioninae)
Located in Library / RBINS Staff Publications 2020
Article Reference Landscape evolution and changes in soil hydraulic properties at the decadal, centennial and millennial scale: a case study from the Campine area, northern Belgium
Located in Library / No RBINS Staff publications
Article Reference From a pair to a dozen: the piscivorous species of Haplochromis (Cichlidae) from the Lake Edward system
Located in Library / RBINS Staff Publications 2022 OA
Article Reference Co-introduction of Dolicirroplectanum lacustre, a monogenean gill parasite of the invasive Nile perch Lates niloticus: intraspecific diversification and mitonuclear discordance in native versus introduced areas
Located in Library / RBINS Staff Publications 2022 OA
Article Reference Species depauperate communities and low abundances of monogenean gill parasites at the edge of the natural distribution range of their cichlid hosts in northern Africa
Located in Library / RBINS Staff Publications 2022
Article Reference Rome à la campagne : les décors de marbre de la villa de la Grande Boussue à Nouvelles (Mons, Belgique).
Located in Library / RBINS Staff Publications 2023