Skip to content. | Skip to navigation

Personal tools

You are here: Home
9 items matching your search terms.
Filter the results.
Item type

New items since

Sort by relevance · date (newest first) · alphabetically
Inbook Reference Blue mussel Mytilus edulis as habitat provider on offshore wind turbine foundations
We compare the species composition of the early (mussels not prevalent) and mature (mussels prevalent) subtidal colonizing communities at offshore windturbine foundations with special attention to the mobility and habitat preferences of the colonizing species. We identified 47 species belonging to nine different phyla from the samples of the mature community, including 21 species unique to the secondary substratum provided by the mussel shell, all of them are sessile species. Only 17 of the 37 species identified from the early subtidal colonizing community were present in the mature community. The main phyla present in both the early and mature samples were Mollusca, Arthropoda, and Annelida. Our findings confirm the hypothesis that mussels counteract the impoverishment of total species richness on wind turbines, caused by the abundant presence of Metridium senile in mature artificial hard substratum communities by providing secondary substratum for colonization by. sessile and hemi-sessile epifauna. The species assemblage found on these mussels is different from the one previously found on the piles, and only seventeen species (~36%) present in the mature community were already present in the first year after installation. In 2020, all bryozoan species (7) were exclusively observed on the secondary substratum provided by the shells of the mussels. However, these species were previously encountered on the scour protection or on the shells of other bivalves. This may be due to the fact that the secondary substratum provided by the mussels differs in physical properties (e.g., microhabitat complexity) from the primary (vertical) substratum of the pile.
Located in Library / RBINS Staff Publications 2021
Inbook Reference Offshore renewable energy development in the Belgian part of the North Sea – 2021
Located in Library / RBINS Staff Publications 2021
Article Reference The EU Biodiversity Strategy for 2030: Opportunities and challenges on the path towards biodiversity recovery
The European Union (EU) has committed to an ambitious biodiversity recovery plan in its Biodiversity Strategy for 2030 and the Green Deal. These policies aim to halt biodiversity loss and move towards sustainable development, focusing on restoring degraded habitats, extending the network of protected areas (PAs), and improving the effectiveness of management, governance, and funding. The achievement of conservation goals must be founded on understanding past successes and failures. Here, we summarise the strengths and weaknesses of past EU biodiversity conservation policies and practices and explore future opportunities and challenges. We focus on four main aspects: i) coordination among and within the EU Member States, ii) integration of biodiversity conservation into socio-economic sectors, iii) adequacy and sufficiency of funds, and iv) governance and stakeholder participation.Whilst past conservation efforts have benefitted from common rules across the EU and funding mechanisms, they have failed at operationalizing coordination within and across the Member States, integrating biodiversity conservation into other sectoral policies, adequately funding and effectively enforcing management, and facilitating stakeholder participation in decision-making. Future biodiversity conservation would benefit from an extended and better-managed network of PAs, additional novel funding opportunities, including the private sector, and enhanced co-governance. However, it will be critical to find sustainable solutions to potential conflicts between conservation goals and other socio-economic objectives and to resolve inconsistencies across sectoral policies.
Located in Library / RBINS Staff Publications 2022
Book Reference Environmental impacts of offshore wind farms in the Belgian part of the North Sea: Attraction, avoidance and habitat use at various spatial scales
Located in Library / RBINS Staff Publications 2021
Inbook Reference Occurrence of intense bird migration events at rotor height in Belgian offshore wind farms and curtailment as possible mitigation to reduce collision risk
Located in Library / RBINS Staff Publications 2021
Inbook Reference Executive summary: Attraction, avoidance and habitat use at various spatial scales
Located in Library / RBINS Staff Publications 2021
Article Reference From plate to plug: The impact of offshore renewables on European fisheries and the role of marine spatial planning
Offshore renewables (OR), such as offshore wind farms, are a key pillar to address increasing energy demands and the global transition to a carbon-free power sector. The transition to ever more occupied marine spaces, often facilitated by marine spatial planning (MSP), increases the conflict potential with free ranging marine sectors such as fisheries. Here, we quantified for the first time the direct impact of current and future OR development on fisheries across European seas. We defined direct impact as the average annual fishing effort (h) overlapping with OR planning sites and applied an ensemble approach by deploying and harmonising various fisheries data to optimise spatial coverage for the European seas. The North Sea region will remain the centre of OR development for a long time, but a substantial increase of conflict potential between these sectors will also occur in other European sea basins after 2025. Across all sea basins, fishing fleets deploying bottom contacting gears targeting flatfish and crustaceans are and will be affected the most by the already constructed and planned OR. Our results provide a solid basis towards an understanding of the socio-economic effects of OR development on European fisheries. We argue that European MSP processes need to adopt common strategies to produce standardised and harmonised socio-economic data to understand implications of OR on free-ranging marine activities such as fisheries.
Located in Library / RBINS Staff Publications 2021
Article Reference Subtidal Natural Hard Substrate Quantitative Habitat Mapping: Interlinking Underwater Acoustics and Optical Imagery with Machine Learning
Subtidal natural hard substrates (SNHS) promote occupancy by rich benthic communities that provide irreplaceable and fundamental ecosystem functions, representing a global priority target for nature conservation and recognised in most European environmental legislation. However, scientifically validated methodologies for their quantitative spatial demarcation, including information on species occupancy and fine-scale environmental drivers (e.g., the effect of stone size on colonisation) are rare. This is, however, crucial information for sound ecological management. In this investigation, high-resolution (1 m) multibeam echosounder (MBES) depth and backscatter data and derivates, underwater imagery (UI) by video drop-frame, and grab sediment samples, all acquired within 32 km2 of seafloor in offshore Belgian waters, were integrated to produce a random forest (RF) spatial model, predicting the continuous distribution of the seafloor areal cover/m2 of the stones’ grain sizes promoting colonisation by sessile epilithic organisms. A semi-automated UI acquisition, processing, and analytical workflow was set up to quantitatively study the colonisation proportion of different grain sizes, identifying the colonisation potential to begin at stones with grain sizes Ø ≥ 2 cm. This parameter (i.e., % areal cover of stones Ø ≥ 2 cm/m2) was selected as the response variable for spatial predictive modelling. The model output is presented along with a protocol of error and uncertainty estimation. RF is confirmed as an accurate, versatile, and transferable mapping methodology, applicable to area-wide mapping of SNHS. UI is confirmed as an essential aid to acoustic seafloor classification, providing spatially representative numerical observations needed to carry out quantitative seafloor modelling of ecologically relevant parameters. This contribution sheds innovative insights into the ecologically relevant delineation of subtidal natural reef habitat, exploiting state-of-the-art underwater remote sensing and acoustic seafloor classification approaches.
Located in Library / RBINS Staff Publications 2021
Inbook Reference Effects of the use of noise-mitigation during offshore pile driving on harbour porpoise (Phocoena phocoena)
In recent years, noise-mitigation technology became more efficient and noise levels during pile driving were reduced significantly. Using passive acoustic monitoring (PAM) datasets from 2016 (Nobelwind construction – no noise mitigation) and 2019 (Northwester 2 and SeaMade construction – Double Big Bubble Curtain) we analyse whether noise mitigation measures applied during the construction of offshore wind farms influenced the likelihood of detecting harbour porpoise (Phocoena phocoena) during pile driving in the Belgian part of the North Sea (BPNS). Exploratory analyses indicate reductions to the spatial and temporal extent of avoidance of the construction area by porpoise when noise mitigation is applied. Without noise mitigation, mean detection rates of porpoises reduced up to 15-20 km from the pile driving location. With noise mitigation however, mean detection rates of porpoises reduced to a lesser extent and this reduction mainly took place at 0-10 km from the pile driving.
Located in Library / RBINS Staff Publications 2021